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Conjecture: Termination of the Minimal Model Program

For any smooth projective variety X after finitely many steps of
MMP (divisorial contractions and flips), we reach either a “minimal
model” Y (with terminal singularities) of X: Ky is nef (Ky - C >0
for any curve C) or a Mori fiber space: Y admits a Fano fibration

Y — Z (—Ky is ample over Z, and dimZ < dim Y),

Xo =X —3 Xi 3+~ Xp 1= Y.

e Usual MMP is for pairs (X, B), for simplicity, this talk will focus
on B=0.
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e Termination of MMP for surfaces is easy as the Picard number p
drops after each divisorial contraction (no flip for surfaces).
e Termination of MMP in dimension 3 by
® Shokurov 85" (X is terminal), introduced so called “difficulty
function”, the function drops after each step of flip:

d(X) := #{E | Ax(E) < 2} < +o0,

let X --» X be a flip, and E the exceptional divisor of the
blow up the flipped curve C*, Ax+(E) =2 > Ax(E), and
d(X) > d(X™T).

e Kawamata 92" (X is klt, “difficulty function”)

e Shokurov 96" (X is lc, “special termination”, slogan:
termination in low dimension implies termiantion near Ic
locus).
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When d = dim X > 4, “difficulty function” does not work well:
¢ (d — m,d — n)-flips may appear instead of (d — 2,d — 2)-flip,
n > 2, where d — n is the dimension of the flipped locus.
® Blow-up flipped locus: Ax+(E) =n> 2 but
#{E | Ax(E) < n} may not be finite.
When dim X = 4, termination is known when
® X is terminal (Kawamata-Matsuda-Matsuki 88’, Fujino 05’):
“difficulty function” works for (1,2), (2,2)-flip. For (2,1)-flip,
h'8(X) drops.

¢ —Kx =D >0 for some D (Alexeev-Hacon-Kawamata 07'):
new “(weighted) difficulty function”.

When dim X =5, (2,2)-flip for terminal X is unknown.
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When dim X > 4, and Kx = D > 0, Birkar 07': termination in low
dimension implies the termination of Kx-MMP.
Birkar's idea:
® Any Kx-MMP is a (Kx + tD)-MMP for any t > 0, where
o tx =lct(X; D) <let(XT; D) = tx+, where
let(X; D) := max{t > 0| (X, tD) is Ic.},
¢ (assume termination in low dimension) Special termination:

termination near Ic locus of (X, tx D), outside Ic locus
let(X; D) increases.

® Repeat special termination, get a strictly increasing sequence
of lct(X; D) which contradicts the ACC for lct's.
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H.-J. Liu-Qi-Zhuang 2025 preprint

Let X be a general type (Kx is big) projective variety with mild
(klt) singularities of dimension 5. Then any Kx-MMP terminates.
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H.-J. Liu-Qi-Zhuang 2025 preprint

Let X be a general type (Kx is big) projective variety with mild
(klt) singularities of dimension 5. Then any Kx-MMP terminates.

e Birkar-Cascini-Hacon-M“Kernan 10’ proved the termination of
general type MMP with scaling (a special kind of MMP).

e Shokurov's “difficulty function” does not work well in
dimension > b.

® Termination in dimension 4 is unknown in full generality.
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H.-J. Liu-Qi-Zhuang 2025 preprint

Let X be a general type (Kx is big) projective variety with mild
(klt) singularities of dimension 5. Then any Kx-MMP terminates.

e Birkar-Cascini-Hacon-M“Kernan 10’ proved the termination of
general type MMP with scaling (a special kind of MMP).

e Shokurov's “difficulty function” does not work well in
dimension > b.

® Termination in dimension 4 is unknown in full generality.

® |dea: apply idea of [Birkar 07'], termination of terminal
fourfold, and tools from local (algebraic) K-stability theory.
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Termination: Shokurov's approach-minimal log discrepancies

For any birational morphism f : Y — X, we may write
Ky + ZE(]' — Ax(E))E ~Q f*Kx,

where E run over exceptional divisors of 7.
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Termination: Shokurov's approach-minimal log discrepancies

For any birational morphism f : Y — X, we may write
Ky + ZE(]' — Ax(E))E ~Q f*Kx,

where E run over exceptional divisors of 7.
Let x be a closed point on X, the minimal log discrepancy (mld) is

defined by:

mld(X 3 x) := min{Ax(E) | VE centerx(E) = {x}}.

Jingjun Han SCMS, Fudan University

Boundedness in general type MMP 7/19



Termination: Shokurov's approach-minimal log discrepancies

For any birational morphism f : Y — X, we may write
Ky + ZE(]' — Ax(E))E ~Q f*Kx,

where E run over exceptional divisors of 7.
Let x be a closed point on X, the minimal log discrepancy (mld) is
defined by:

mld(X 3 x) := min{Ax(E) | VE centerx(E) = {x}}.

¢ MId measures the singularities: mld(X > x) is larger if
singularity x € X is better.

e Conjecture: mld(X 3 x) < dim X with the equality holds iff X
is smooth near x.

e dim X = 2, the set of mlds contains { | n € N, }, and if
mld(X > x) < 1, then mld(X > x) < 3.

SCMS, Fudan University
7/19

Jingjun Han

Boundedness in general type MMP



Termination: Shokurov's approach-minimal log discrepancies

Conjecture (ACC conjecture for mlds, Shokurov 1988)

For any x € X of a given dimension d, mld(X > x) belongs to a
set which satisfies the ascending chain condition (ACC).

Conjecture (LSC conjecture for mlds, Ambro 1999)

Let X be a variety with mild (klt) singularities. Then the function
x — mld(X > x) is lower-semicontinuous (LSC).

Theorem ([Shokurov 2004])

ACC for mlds and the LSC for mids imply the termination.
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Termination: Shokurov's approach-minimal log discrepancies

Conjecture (ACC conjecture for mlds, Shokurov 1988

For any x € X of a given dimension d, mld(X > x) belongs to a
set which satisfies the ascending chain condition (ACC).

Conjecture (LSC conjecture for mlds, Ambro 1999)

Let X be a variety with mild (klt) singularities. Then the function
x — mld(X > x) is lower-semicontinuous (LSC).

Theorem ([Shokurov 2004])

ACC for mlds and the LSC for mids imply the termination.

e Reduce a global problem (classification of varieties) to a local problem
(singularities).
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Termination: Shokurov's approach-minimal log discrepancies

e ACC for mlds is open for threefolds,
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e ACC for mlds is open for threefolds,
e |SC for mlds is open for fourfolds,
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Termination: Shokurov's approach-minimal log discrepancies

Jingjun Han

e ACC for mlds is open for threefolds,
e |SC for mlds is open for fourfolds,

e Counterexample for LSC for mlds (families version): X — B,
b+ mld(Xp > b), dim X, = 5 (Nakamura-Shibata 2024,
preprint),
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ACC for mlds is open for threefolds,
LSC for mlds is open for fourfolds,

Counterexample for LSC for mlds (families version): X — B,
b+ mld(Xp > b), dim X, = 5 (Nakamura-Shibata 2024,
preprint),

LSC for mlds seems be mysterisous due to the example by
Nakamura-Shibata 24'.
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Termination: Shokurov's approach-minimal log discrepancies

e ACC for mlds is open for threefolds,
e |SC for mlds is open for fourfolds,

e Counterexample for LSC for mlds (families version): X — B,
b+ mld(Xp > b), dim X, = 5 (Nakamura-Shibata 2024,
preprint),

e LSC for mlds seems be mysterisous due to the example by
Nakamura-Shibata 24'.

® Recall termination is known for threefolds.
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Termination: Shokurov's approach-minimal log discrepancies

o QQ:

ACC for mlds is open for threefolds,
LSC for mlds is open for fourfolds,

Counterexample for LSC for mlds (families version): X — B,
b+ mld(Xp > b), dim X, = 5 (Nakamura-Shibata 2024,
preprint),

LSC for mlds seems be mysterisous due to the example by
Nakamura-Shibata 24'.

Recall termination is known for threefolds.
Are ACC for mlds and LSC for mlds harder than termination?

Is there any other approach?

Jingjun Han
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Termination: any other approach?

Q1: Do we need the full power of ACC for mlds and LSC for mlds?
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Termination: any other approach?

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

[H.-J. Liu 2025] show the following:

e ACC for mlds for exceptionally non-canonical (enc) singularities
and both conjectures for terminal singularities are enough.

e enc: non-canonical, and exactly one non-terminal exceptional
divisor.
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Termination: any other approach?

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

[H.-J. Liu 2025] show the following:

e ACC for mlds for exceptionally non-canonical (enc) singularities
and both conjectures for terminal singularities are enough.

e enc: non-canonical, and exactly one non-terminal exceptional
divisor.

e ACC for enc singularities holds in dimension 3, so termination
holds for threefolds (without difficult function).

e In order to prove the termination for fourfolds, it suffices to show
ACC for mlds for enc singularities.
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Termination: any other approach?

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

[H.-J. Liu 2025] show the following:

e ACC for mlds for exceptionally non-canonical (enc) singularities
and both conjectures for terminal singularities are enough.

e enc: non-canonical, and exactly one non-terminal exceptional
divisor.

e ACC for enc singularities holds in dimension 3, so termination
holds for threefolds (without difficult function).

e In order to prove the termination for fourfolds, it suffices to show
ACC for mlds for enc singularities.

e enc singularities in dimension 4 seems still be too complicated.
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Termination: any other approach?

| asked the following question in 2017 when | was a Ph.D. student
(in my Research Statement when | applied for postdoc).
Q2: Could we replace mlds by local volumes?
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Termination: any other approach?

| asked the following question in 2017 when | was a Ph.D. student
(in my Research Statement when | applied for postdoc).
Q2: Could we replace mlds by local volumes?

e C. Li introduced local volumes with motivation from questions in
K-stability.

e LSC holds for local volumes (Blum-Y. Liu 2021).

e ACC holds for local volumes (Xu-Zhuang 2024 preprint, H.-J.
Liu-Qi 2024 preprint)
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Let X be a kit variety of dimensional n and x € X a closed point.
For any v € Valx ., the local volume of X, at x is defined as

vol(x, X) := it volx(v) > 0,

where ;alx(v) is the normalized volume of v:

i) o [ o). Ax(v) < o
volx(v) :=
X 400, if Ax(v) = +oo.
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Let X be a kit variety of dimensional n and x € X a closed point.
For any v € Valx ., the local volume of X, at x is defined as

vol(x, X) := it volx(v) > 0,

where ;alx(v) is the normalized volume of v:

— Ax(v)n-VOlXX(V), if Ax(V) < 400,
volx(v) = ’ :
+o0, if Ax(v) = +oo.
e Key differences: mlds satisfy monotonicity in the MMP, while
the local volume does not:
® |t is possible for a flip (X, A) --» (X, AT):
VOI(X’A)(V) > VOI(X+7A+)(V).
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Solution: introduce log canonical local volumes: Volx.

Key Lemmas, H.-J. Liu-Qi-Zhuang 2025 preprint

® p: X --» X’ be an MMP type contraction between general
type (Kx is big) klt varieties. Then Volxs > Volx.

® Let X be a general type kit variety. Then for any closed point
x € X, Vol(x X) > Volx.

As a consequence:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem A

Let X be a general type projective kit variety. Then there exists
€ > 0 such that for any sequence of steps of a Kx-MMP X --» X/
and any closed point x" € X/, vol(x’, X") > «.
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Xu-Zhuang 21

Let D be a Q-Cartier Weil divisor on X. Then rD is Cartier near x
for some positive integer r <

n
vol(x,X)
Combing Xu-Zhuang and Theorem A, we obtain:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem B

Let X be a general type (Kx is big) projective kit variety. There
exist a positive integer r and a finite set S C R, depending only
on X, such that for any sequence of steps of a Kx-MMP X --» Y,

@ the Cartier index of any Q-Cartier Weil divisor on Y is at
most r, and

@® for any point y € Y, mld(y, Y) € S.

e Theorem B confirms the ACC conjecture of mld for general type
MMPs.
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Applications: fivefold (effective) termination

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem C

Let X be a general type projective klt variety of dimension 5.
There exists a positive integer m depending only on X such that
every Kx-MMP terminates after at most m steps.

Idea of the proof:

e Apply idea of [Birkar 07] and Theorem B, it suffices to prove the
termination in dimension 4 and the Cartier index of Kx are
bounded in the MMP.

e Lift the MMP to the terminalization, we may reduce to the
terminal fourfolds case.
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Although we are unable to prove the termination of general type
MMP, we show the boundedness:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem D

Let X be a general type projective klt variety. Then there exists a
projective family YW — B over a finite type base B, such that in
any sequence of Kx-MMP, every fiber of the extremal contractions
or the flips is isomorphic to W), for some b € B.
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Although we are unable to prove the termination of general type
MMP, we show the boundedness:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem D

Let X be a general type projective klt variety. Then there exists a
projective family YW — B over a finite type base B, such that in
any sequence of Kx-MMP, every fiber of the extremal contractions
or the flips is isomorphic to W), for some b € B.

e Our method can be used to show that any fixed order
infinitesimal neighborhood of the fibers belong to a bounded family.
e We expect: there are only finitely many “analytic types” of flips
in the MMP, and the invariants of local nature can only change in
finitely many different ways in the MMP.
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H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem E

Let N be a positive integer and X a general type projective smooth
variety of dimension 4. Assume that

@ The Picard number of X is at most N, hzlg(X) < N, and
® vol(Kx) > 4, and (Kx - H®) < N for some very ample divisor
H on X.

Then any Kx-MMP terminates after at most MM steps, where
M := (2N)°!,

SCMS, Fudan University
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H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem E

Let N be a positive integer and X a general type projective smooth
variety of dimension 4. Assume that

@ The Picard number of X is at most N, hzlg(X) < N, and
® vol(Kx) > 4, and (Kx - H®) < N for some very ample divisor

H on X.
Then any Kx-MMP terminates after at most MM steps, where
M := (2N)°!,

e Here h2'8(X) is the dimension of the subgroup in the singular
homology group Has(X,R) generated by algebraic cycles.

e We also obtain explicit termination result for threefolds (not
necessarily general type).

e We prove Theorems A-E for kit pairs (with big boundary A), and
even the termination was unknown for such pairs (in dimension 4).
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Definition of Ic volume

e A graded linear series V, is eventually birational if the induced
rational map X --» | V)| is birational onto its image for all
sufficiently large m € M(V4,).

® Let L be a big R-Cartier divisor. A graded linear series V, of L
is called admissible if it is eventually birational and (X,I) is
log canonical for all m € M(V,) and all T € L|V,,|.

® Define the log canonical volume of L as follows:

Volx (L) := sup{vol(Vs) | Vs is admissible},

dim(Vim)

where vol(V4) := limp(v,)5m—-4oo w7l
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