Boundedness in general type MMP

Jingjun Han

SCMS, Fudan University

2025年7月26日

Conjecture: Termination of the Minimal Model Program

For any smooth projective variety X after finitely many steps of MMP (divisorial contractions and flips), we reach either a "minimal model" Y (with terminal singularities) of X: K_Y is nef $(K_Y \cdot C \ge 0)$ for any curve C) or a Mori fiber space: Y admits a Fano fibration $Y \to Z$ ($-K_Y$ is ample over Z, and dim $Z < \dim Y$),

$$X_0 := X \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_n := Y.$$

• Usual MMP is for pairs (X, B), for simplicity, this talk will focus on B = 0.

- ullet Termination of MMP for surfaces is easy as the Picard number ho drops after each divisorial contraction (no flip for surfaces).
- Termination of MMP in dimension 3 by
 - Shokurov 85' (X is terminal), introduced so called "difficulty function", the function drops after each step of flip:

$$d(X) := \#\{E \mid A_X(E) < 2\} < +\infty,$$

let $X \dashrightarrow X^+$ be a flip, and E the exceptional divisor of the blow up the flipped curve C^+ , $A_{X^+}(E) = 2 > A_X(E)$, and $d(X) > d(X^+)$.

- Kawamata 92' (X is klt, "difficulty function")
- Shokurov 96' (X is lc, "special termination", slogan: termination in low dimension implies termination near lc locus).

When $d = \dim X > 4$, "difficulty function" does not work well:

- (d-m, d-n)-flips may appear instead of (d-2, d-2)-flip, n > 2, where d - n is the dimension of the flipped locus.
- Blow-up flipped locus: $A_{X^+}(E) = n > 2$ but $\#\{E \mid A_X(E) < n\}$ may not be finite.

When dim X = 4, termination is known when

- X is terminal (Kawamata-Matsuda-Matsuki 88', Fujino 05'): "difficulty function" works for (1,2), (2,2)-flip. For (2,1)-flip, $h_{\perp}^{\mathrm{alg}}(X)$ drops.
- $-K_X \equiv D \ge 0$ for some D (Alexeev-Hacon-Kawamata 07'): new "(weighted) difficulty function".

When dim X = 5, (2,2)-flip for terminal X is unknown.

SCMS, Fudan University

When dim $X \geq 4$, and $K_X \equiv D \geq 0$, Birkar 07': termination in low dimension implies the termination of K_X -MMP.

Birkar's idea:

- Any K_X -MMP is a $(K_X + tD)$ -MMP for any $t \ge 0$, where
- $t_X = lct(X; D) < lct(X^+; D^+) = t_{X^+}$, where $lct(X; D) := max\{t > 0 \mid (X, tD) \text{ is lc.}\},\$
- (assume termination in low dimension) Special termination: termination near lc locus of $(X, t_X D)$, outside lc locus lct(X; D) increases.
- Repeat special termination, get a strictly increasing sequence of lct(X; D) which contradicts the ACC for lct's.

SCMS, Fudan University

H.-J. Liu-Qi-Zhuang 2025 preprint

Let X be a general type (K_X is big) projective variety with mild (klt) singularities of dimension 5. Then any K_X -MMP terminates.

H.-J. Liu-Qi-Zhuang 2025 preprint

Let X be a general type (K_X is big) projective variety with mild (klt) singularities of dimension 5. Then any K_X -MMP terminates.

- Birkar-Cascini-Hacon-McKernan 10' proved the termination of general type MMP with scaling (a special kind of MMP).
- Shokurov's "difficulty function" does not work well in dimension ≥ 5 .
- Termination in dimension 4 is unknown in full generality.

SCMS. Fudan University

H.-J. Liu-Qi-Zhuang 2025 preprint

Let X be a general type (K_X is big) projective variety with mild (klt) singularities of dimension 5. Then any K_X -MMP terminates.

- Birkar-Cascini-Hacon-M^cKernan 10' proved the termination of general type MMP with scaling (a special kind of MMP).
- Shokurov's "difficulty function" does not work well in dimension > 5.
- Termination in dimension 4 is unknown in full generality.
- Idea: apply idea of [Birkar 07'], termination of terminal fourfold, and tools from local (algebraic) K-stability theory.

SCMS. Fudan University

For any birational morphism $f: Y \to X$, we may write

$$K_Y + \sum_E (1 - A_X(E))E \sim_{\mathbb{Q}} f^*K_X$$
,

where E run over exceptional divisors of f.

For any birational morphism $f: Y \to X$, we may write

$$K_Y + \sum_E (1 - A_X(E))E \sim_{\mathbb{Q}} f^*K_X$$

where E run over exceptional divisors of f.

Let x be a closed point on X, the minimal log discrepancy (mld) is defined by:

$$\mathsf{mld}(X \ni x) := \min\{A_X(E) \mid \forall E \, \mathsf{center}_X(E) = \{x\}\}.$$

For any birational morphism $f: Y \to X$, we may write

$$K_Y + \sum_E (1 - A_X(E))E \sim_{\mathbb{Q}} f^*K_X$$

where E run over exceptional divisors of f.

Let x be a closed point on X, the minimal log discrepancy (mld) is defined by:

$$\mathsf{mld}(X \ni x) := \min\{A_X(E) \mid \forall E \, \mathsf{center}_X(E) = \{x\}\}.$$

- MId measures the singularities: $mId(X \ni x)$ is larger if singularity $x \in X$ is better.
- Conjecture: $mld(X \ni x) \le dim X$ with the equality holds iff X is smooth near x.
- dim X=2, the set of mlds contains $\{\frac{1}{n} \mid n \in \mathbb{N}_+\}$, and if $mld(X \ni x) < 1$, then $mld(X \ni x) \le \frac{2}{3}$.

Conjecture (ACC conjecture for mlds, Shokurov 1988)

For any $x \in X$ of a given dimension d, $mld(X \ni x)$ belongs to a set which satisfies the ascending chain condition (ACC).

Conjecture (LSC conjecture for mlds, Ambro 1999)

Let X be a variety with mild (klt) singularities. Then the function $x \mapsto \mathsf{mld}(X \ni x)$ is lower-semicontinuous (LSC).

Theorem ([Shokurov 2004])

ACC for mlds and the LSC for mlds imply the termination.

Conjecture (ACC conjecture for mlds, Shokurov 1988)

For any $x \in X$ of a given dimension d, $mld(X \ni x)$ belongs to a set which satisfies the ascending chain condition (ACC).

Conjecture (LSC conjecture for mlds, Ambro 1999)

Let X be a variety with mild (klt) singularities. Then the function $x \mapsto \mathsf{mld}(X \ni x)$ is lower-semicontinuous (LSC).

Theorem ([Shokurov 2004])

ACC for mlds and the LSC for mlds imply the termination.

• Reduce a global problem (classification of varieties) to a local problem (singularities).

• ACC for mlds is open for threefolds,

- ACC for mlds is open for threefolds,
- LSC for mlds is open for fourfolds,

- ACC for mlds is open for threefolds,
- LSC for mlds is open for fourfolds,
- Counterexample for LSC for mlds (families version): $\mathcal{X} \to \mathcal{B}$, $b \mapsto \mathsf{mld}(\mathcal{X}_b \ni b)$, $\dim \mathcal{X}_b = 5$ (Nakamura-Shibata 2024, preprint),

- ACC for mlds is open for threefolds,
- LSC for mlds is open for fourfolds,
- Counterexample for LSC for mlds (families version): $\mathcal{X} \to \mathcal{B}$, $b \mapsto \mathsf{mld}(\mathcal{X}_b \ni b)$, dim $\mathcal{X}_b = 5$ (Nakamura-Shibata 2024, preprint),
- LSC for mlds seems be mysterisous due to the example by Nakamura-Shibata 24'.

- ACC for mlds is open for threefolds,
- LSC for mlds is open for fourfolds,
- Counterexample for LSC for mlds (families version): $\mathcal{X} \to \mathcal{B}$, $b \mapsto \mathsf{mld}(\mathcal{X}_b \ni b)$, $\dim \mathcal{X}_b = 5$ (Nakamura-Shibata 2024, preprint),
- LSC for mlds seems be mysterisous due to the example by Nakamura-Shibata 24'.
- Recall termination is known for threefolds.

- ACC for mlds is open for threefolds,
- LSC for mlds is open for fourfolds,
- Counterexample for LSC for mlds (families version): $\mathcal{X} \to \mathcal{B}$, $b \mapsto \mathsf{mld}(\mathcal{X}_b \ni b)$, $\dim \mathcal{X}_b = 5$ (Nakamura-Shibata 2024, preprint),
- LSC for mlds seems be mysterisous due to the example by Nakamura-Shibata 24'.
- Recall termination is known for threefolds.
- **Q**: Are ACC for mlds and LSC for mlds harder than termination? Is there any other approach?

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

[H.-J. Liu 2025] show the following:

- ACC for mlds for exceptionally non-canonical (enc) singularities and both conjectures for terminal singularities are enough.
- enc: non-canonical, and exactly one non-terminal exceptional divisor.

<□▶ <□▶ < ≣ ▶ < ≣ ▶ < ≣ ▶ ♥ 9 < ℃

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

[H.-J. Liu 2025] show the following:

- ACC for mlds for exceptionally non-canonical (enc) singularities and both conjectures for terminal singularities are enough.
- enc: non-canonical, and exactly one non-terminal exceptional divisor.
- ACC for enc singularities holds in dimension 3, so termination holds for threefolds (without difficult function).
- In order to prove the termination for fourfolds, it suffices to show ACC for mlds for enc singularities.

Q1: Do we need the full power of ACC for mlds and LSC for mlds?

[H.-J. Liu 2025] show the following:

- ACC for mlds for exceptionally non-canonical (enc) singularities and both conjectures for terminal singularities are enough.
- enc: non-canonical, and exactly one non-terminal exceptional divisor.
- ACC for enc singularities holds in dimension 3, so termination holds for threefolds (without difficult function).
- In order to prove the termination for fourfolds, it suffices to show ACC for mlds for enc singularities.
- enc singularities in dimension 4 seems still be too complicated.

I asked the following question in 2017 when I was a Ph.D. student (in my Research Statement when I applied for postdoc).

Q2: Could we replace mlds by local volumes?

I asked the following question in 2017 when I was a Ph.D. student (in my Research Statement when I applied for postdoc).

Q2: Could we replace mlds by local volumes?

- C. Li introduced local volumes with motivation from questions in K-stability.
- LSC holds for local volumes (Blum-Y. Liu 2021).
- ACC holds for local volumes (Xu-Zhuang 2024 preprint, H.-J. Liu-Qi 2024 preprint)

Let X be a klt variety of dimensional n and $x \in X$ a closed point. For any $v \in \operatorname{Val}_{X,x}$, the *local volume* of X, at x is defined as

$$\widehat{\mathrm{vol}}(x,X) := \inf_{v \in \mathrm{Val}_{X,x}} \widehat{\mathrm{vol}}_X(v) > 0,$$

where $\widehat{\mathrm{vol}}_X(v)$ is the normalized volume of v:

$$\widehat{\operatorname{vol}}_X(v) := egin{cases} A_X(v)^n \cdot \operatorname{vol}_{X,x}(v), & \text{if } A_X(v) < +\infty, \\ +\infty, & \text{if } A_X(v) = +\infty. \end{cases}$$

Let X be a klt variety of dimensional n and $x \in X$ a closed point. For any $v \in \operatorname{Val}_{X,x}$, the *local volume* of X, at x is defined as

$$\widehat{\mathrm{vol}}(x,X) := \inf_{v \in \mathrm{Val}_{X,x}} \widehat{\mathrm{vol}}_X(v) > 0,$$

where $\widehat{vol}_X(v)$ is the normalized volume of v:

$$\widehat{\operatorname{vol}}_X(v) := egin{cases} A_X(v)^n \cdot \operatorname{vol}_{X,x}(v), & \text{if } A_X(v) < +\infty, \\ +\infty, & \text{if } A_X(v) = +\infty. \end{cases}$$

- Key differences: mlds satisfy monotonicity in the MMP, while the local volume does not:
- It is possible for a flip $(X, \Delta) \longrightarrow (X^+, \Delta^+)$: $\operatorname{vol}_{(X,\Lambda)}(v) > \operatorname{vol}_{(X^+,\Lambda^+)}(v)$.

Solution: introduce log canonical local volumes: $\widehat{\mathrm{Vol}}_X$.

Key Lemmas, H.-J. Liu-Qi-Zhuang 2025 preprint

- $\varphi \colon X \dashrightarrow X'$ be an MMP type contraction between general type $(K_X \text{ is big})$ klt varieties. Then $\widehat{\operatorname{Vol}}_{X'} \ge \widehat{\operatorname{Vol}}_X$.
- Let X be a general type klt variety. Then for any closed point $x \in X$, $\widehat{\mathrm{vol}}(x,X) \geq \widehat{\mathrm{Vol}}_X$.

As a consequence:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem A

Let X be a general type projective klt variety. Then there exists $\varepsilon > 0$ such that for any sequence of steps of a K_X -MMP $X \dashrightarrow X'$ and any closed point $X' \in X'$, $\widehat{\operatorname{vol}}(x', X') \ge \varepsilon$.

Xu-Zhuang 21

Let D be a \mathbb{Q} -Cartier Weil divisor on X. Then rD is Cartier near x for some positive integer $r \leq \frac{n^n}{\widehat{\operatorname{vol}}(x,X)}$.

Combing Xu-Zhuang and Theorem A, we obtain:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem B

Let X be a general type (K_X is big) projective klt variety. There exist a positive integer r and a finite set $S \subseteq \mathbb{R}_+$, depending only on X, such that for any sequence of steps of a K_X -MMP $X \dashrightarrow Y$,

- 1 the Cartier index of any \mathbb{Q} -Cartier Weil divisor on Y is at most r, and
- 2 for any point $y \in Y$, $mld(y, Y) \in S$.
- Theorem B confirms the ACC conjecture of mld for general type MMPs.

Applications: fivefold (effective) termination

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem C

Let X be a general type projective klt variety of dimension 5. There exists a positive integer m depending only on X such that every K_X -MMP terminates after at most m steps.

Idea of the proof:

- Apply idea of [Birkar 07] and Theorem B, it suffices to prove the termination in dimension 4 and the Cartier index of K_X are bounded in the MMP.
- Lift the MMP to the terminalization, we may reduce to the terminal fourfolds case.

Although we are unable to prove the termination of general type MMP, we show the boundedness:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem D

Let X be a general type projective klt variety. Then there exists a projective family $\mathcal{W} \to \mathcal{B}$ over a finite type base \mathcal{B} , such that in any sequence of K_X -MMP, every fiber of the extremal contractions or the flips is isomorphic to \mathcal{W}_b for some $b \in \mathcal{B}$.

SCMS. Fudan University

Although we are unable to prove the termination of general type MMP, we show the boundedness:

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem D

Let X be a general type projective klt variety. Then there exists a projective family $\mathcal{W} \to \mathcal{B}$ over a finite type base \mathcal{B} , such that in any sequence of \mathcal{K}_X -MMP, every fiber of the extremal contractions or the flips is isomorphic to \mathcal{W}_b for some $b \in \mathcal{B}$.

- Our method can be used to show that any fixed order infinitesimal neighborhood of the fibers belong to a bounded family.
- We expect: there are only finitely many "analytic types" of flips in the MMP, and the invariants of local nature can only change in finitely many different ways in the MMP.

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem E

Let N be a positive integer and X a general type projective smooth variety of dimension 4. Assume that

- **1** The Picard number of X is at most N, $h_{\Delta}^{\text{alg}}(X) \leq N$, and
- $vol(K_X) \ge \frac{1}{N}$, and $(K_X \cdot H^3) \le N$ for some very ample divisor H on X

Then any K_X -MMP terminates after at most M^M steps, where $M := (2N)^9!$

H.-J. Liu-Qi-Zhuang 2025 preprint, Theorem E

Let N be a positive integer and X a general type projective smooth variety of dimension 4. Assume that

- **1** The Picard number of X is at most N, $h_4^{\mathrm{alg}}(X) \leq N$, and
- 2 $\operatorname{vol}(K_X) \geq \frac{1}{N}$, and $(K_X \cdot H^3) \leq N$ for some very ample divisor H on X.

Then any K_X -MMP terminates after at most M^M steps, where $M := (2N)^9!$.

- Here $h_4^{\mathrm{alg}}(X)$ is the dimension of the subgroup in the singular homology group $H_4(X,\mathbb{R})$ generated by algebraic cycles.
- We also obtain explicit termination result for threefolds (not necessarily general type).
- We prove Theorems A-E for klt pairs (with big boundary Δ), and even the termination was unknown for such pairs (in dimension 4).

Thank you!!

Definition of lc volume

- A graded linear series V_• is eventually birational if the induced rational map X --→ |V_m| is birational onto its image for all sufficiently large m ∈ M(V_•).
- Let L be a big \mathbb{R} -Cartier divisor. A graded linear series V_{\bullet} of L is called *admissible* if it is eventually birational and (X,Γ) is log canonical for all $m \in M(V_{\bullet})$ and all $\Gamma \in \frac{1}{m}|V_m|$.
- Define the log canonical volume of L as follows:

$$\widehat{\operatorname{Vol}}_X(\mathit{L}) := \sup \{ \operatorname{vol}(\mathit{V}_{ullet}) \, | \, \mathit{V}_{ullet} \ \ \text{is admissible} \},$$

where
$$\operatorname{vol}(V_{\bullet}) := \lim_{M(V_{\bullet}) \ni m \to +\infty} \frac{\dim(V_m)}{m^n/n!}$$
.

